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The pursuit of the stars has always been a testament 
to human ingenuity and the relentless desire to push 
beyond known boundaries.

 As SpaceX’s latest Starship spacecraft soared into 
the skies and returned with precision, it wasn’t just a 
milestone in aerospace engineering—it was a vivid 
illustration of advanced control systems operating at 
the pinnacle of complexity. 

This achievement shows that an autonomous system 
can successfully control a sophisticated system and 
steer it to defined goals by combining key aspects of 
the agentic AI: autonomy, goal-oriented behavior, 
awareness of the environment, and decision-making 
power.

Introduction & Inspiration: Space X + Agentic AI

In the case of the Starship, the two other elements of 
the agentic AI—adaptability and the ability to act upon 
the environment to eect change—are concentrated 
within the control center and the development teams. 

Can we replicate this impact, reliability, and precision 
with a more down-to-earth application of 
GenAI-enabled agentic AI to enterprise systems? 

What challenges arose in the production 
implementations, and what lessons can we learn and 
apply from the control theory to LLM-powered agentic 
AI systems?
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Control theory brought humanity into the industrial 
age, where complex dynamic systems with intrinsic 
machines and mechanisms inside could be eectively 
self-controlled through a feedback loop. 

It started with windmill controls analyzed by James 
Clerk Maxwell in 1868 (a system that controls the fuel 
intake to maintain the constant speed of the rotation) 
and eventually resulted in control systems for 
spaceflight, nuclear stations, and country-wide 
electric grids.

A Short Recap of the Control Theory

At the heart of any classical autonomous system lies 
control theory—a mathematical framework that 
governs how systems respond to inputs to achieve 
desired outputs. 

Control theory provides the tools to design systems 
that can maintain stability, optimize performance, and 
adapt to changes in their environment. 

It is the backbone of engineering disciplines ranging 
from aerospace to robotics, enabling the precise 
maneuvering of spacecraft, the stabilization of 
drones, and the regulation of industrial processes.
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In the most primitive form, control theory guides the design of the systems such as seen in the image below. The 
desired state at any given moment (e.g., parameters of the landing for a spacecraft) is continuously measured by 
Sensors, the desired state is compared with the planned, calculating the error to be transformed into the corrective 
actions generated by the Controller used as an input to the System. With the right design, the rocket will land where 
and how it is supposed to land–most of the time.

A Short Recap of the Control Theory
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The key principles of control theory include:

A fundamental component of 
control systems, feedback loops 
allow a system to adjust its 
behavior based on its output. 

By comparing the desired 
outcome (setpoint) with the 
actual output, the system can 
minimize errors through 
continuous adjustments.

Feedback Loops

Control systems are built upon 
precise mathematical models 
that describe the dynamics of 
the system. 

These models, often expressed 
as dierential equations, enable 
engineers to predict how a 
system will respond to various 
inputs.

Mathematical Modeling

Control theory emphasizes 
designing systems that remain 
stable, monitored, and 
controlled. under a variety of 
conditions. 

Robust control systems can 
handle uncertainties and 
external disturbances without 
deviating from their intended 
performance. 

Controllability, 
Stability, Observability, 
and Robustness

Traditional control systems 
operate under deterministic 
principles, where the same input 
will consistently produce the 
same output. 

This predictability is crucial for 
critical applications like 
spaceflight, where reliability is 
non-negotiable.

Predictability and 
Determinism

A Short Recap of the Control Theory
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An enterprise is also an ecosystem of multiple subsystems. Employees who perform tasks, along with company 
policies and objectives, constitute a complex system. In the paradigm of control theory, the System is an employee 
performing a task, the Controller is the corrective actions to improve the employee’s performance, and the Sensor is 
the supervisor.

Control Theory Applied to Enterprises

The employee can be tasked to produce an analytics report, and the supervisor would read the report and measure 
the “error” against the “perfect” report that the company usually sends to its customers. The Controller role can be 
performed either by the supervisor (that’s what we call micromanagement), or the employee. A more seasoned or 
advanced employee can detect and sense the deviation using only the initially stated goals and without the need of 
the supervisor. 

How can we replicate this goal pursuit with an agentic AI?
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Let’s examine what makes a 
GenAI-powered agentic system 
dierent from a classical, 
non-GenAI agentic system, and 
explore what properties of LLMs 
make the above control theory 
principles so hard to implement.

LLM-Powered Agentic AI Challenges

As we venture into the realm of agentic AI and 
generative AI systems powered by LLMs, we 
encounter a paradigm shift. 

Unlike traditional control systems, LLM-based 
systems exhibit a level of complexity and 
unpredictability that challenges conventional 
engineering approaches. LLM-based systems also 
exhibit properties that make them dierent from 
traditional software systems, even those of high 
complexity. 

The following are some of the key challenges.
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LLM-Powered Agentic AI Challenges

1. Computational Irreducibility
Computational irreducibility implies that the only way to 
determine the outcome of a process is to perform each 
computational step; there are no shortcuts or simplified 
models that can predict the end state without executing the 
full computation. 

LLMs, like GPT-4, are so complex and their internal workings 
so intricate that we cannot predict their exact outputs 
without actually running them. 

Their behavior cannot be encapsulated in simplified 
mathematical models akin to those used in control theory, 
where controllers can be designed to anticipate system 
responses to inputs and disturbances.
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LLMs operate in high-dimensional vector spaces, 
processing inputs through multiple nonlinear 
transformations. This makes their internal 
decision-making processes opaque and their outputs 
sensitive to minute changes in input. 

LLMs have high dimensionality of the inputs and 
outputs. 

For Llama 3.1, the embedding vector size is 4096, 
where the token vocabulary size is 128,256. A simple 
input sentence is about 100 tokens, and a 
megaprompt that includes not only the actual input 
size, but also all of the supporting system prompt 
content can have 2,048 or more tokens.

This results in the staggering 8 million dimensions for 
the input. For agentic components, such as 
text-to-SQL, it is easy to imagine the diiculty of 
testing and optimizing the performance of this single 
component of a more complex, AI agentic system that 
needs to query the data.

2. Nonlinearity and High Dimensionality

LLM-Powered Agentic AI Challenges
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LLM-Powered Agentic AI Challenges

3. Separation of Code and 
Data (or Lack Thereof)
Most computer systems have a clear separation of code and 
data, as per Von Neumann Architecture. This is an extension 
of the classical dynamic control systems, where input data 
from sensors and the control algorithms are equivalent to 
the input and the code in software systems, accordingly. 
That is, unless you program in Lisp. 

LLM-based systems, unfortunately, mix the code and the 
input data. In a typical RAG system, the retrieved data is 
formaed and added to the prompt. The prompt of an LLM 
system is eectively the code, and mixing the data and the 
code introduces a host of testing, reliability, and security 
issues. This mixing of ever-growing data sets with the 
prompts introduces variability that is diicult to model and 
predict, in addition to the intrinsic input dimensionality 
problem of LLMs described previously.
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LLMs may produce dierent outputs for the same 
input due to factors like randomness in sampling 
methods during generation. This stochastic nature 
contrasts with the deterministic outputs expected 
from traditional control systems, as well as from 
traditional software systems. 

It is no surprise that this sensitivity of software 
systems to random data and code changes resulted in 
implementing error correction in the hardware (ECC 
memory used in servers versus regular, 
non-correcting memory), as well as using distributed 
and redundant computation algorithms accounting 
for these issues.

In the traditional systems, including the latest SpaceX 
Starship, feedback loops are highly eective due to 
the predictability of system responses. Adjustments 
made based on feedback can be reliably calculated to 
bring the system closer to the desired state, which 
means a successful atmospheric reentry and landing. 

For LLM-based systems, feedback loops may be less 
eective because the system’s response to feedback 
is not easily predictable. The lack of a simplified model 
(see irreducibility above) makes it challenging to 
design feedback mechanisms that can consistently 
guide the system toward desired outcomes.

4. Stochastic Behavior

LLM-Powered Agentic AI Challenges

5. Feedback Loop Problem 
and System Stability
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Practical 
Recommendations
As enterprises seek to harness the power of LLMs to enhance 
productivity and innovation, they must grapple with the challenges 
posed by computational irreducibility and unpredictability. What 
follows are our top nine recommendations for building a 
functional agentic AI.
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For inner workings, human 
language is not the best. DSLs are 
best suited to minimize 
dimensionality while preserving 
the richness of the actions and 
environment. 

Structured JSON can be the 
simplest way, or it can be more 
sophisticated DSLs. Limiting the 
token generation to 
DSL-compliant output allows LLM 
output to be more reliable without 
aecting performance.

1. Use Domain-Specific 
Languages (DSLs)

Practical Recommendations

LLMs perform best when 
communicating with humans and 
understanding their intent. LLMs 
are also great at translating 
structured data to unstructured 
and back. 

For communication between 
agents, it is best to use 
non-human, structured data 
exchanges.

2. Use Natural Language 
for Interactions with 
Humans Only

LLMs, while slowly improving, are 
not created for complex 
reasoning. 

Classical data-driven machine 
learning, combined with 
mathematically precise logical 
computations, such as predicate 
logic, dynamic programming, or a 
variety of other methods, adds 
the necessary grounding to the 
stochastic nature of LLMs.

3. Fuse Traditional AI/ML 
with GenAI
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The lack of predictability raises 
concerns about the safety of 
agentic AI systems. 

Implementing robust safety 
protocols and fail-safes becomes 
crucial. Specific tolerance to 
wrong agentic decisions must be 
nuanced and use case-specific.

4. Prioritize Safety and 
Reliability

Practical Recommendations

Aligning the goals and actions of 
agentic AI with human values is 
more challenging when the AI’s 
decision-making process is not 
fully transparent or predictable. 

LLMs in their current form lack 
comprehensive ways to interpret 
and understand the internal 
workings, so adding guardrails on 
the input and the output 
(decisions) of the agentic system 
can address ethical concerns 
without jeopardizing the 
eiciency of the inner operations.

5. Ensure Ethical 
Alignment

Embracing adaptive control 
mechanisms that can adjust to 
the dynamic behavior of LLMs, and 
learning from their outputs to 
improve system performance over 
time, is critical for robust AI 
agents.

LLM-as-a-judge is an excellent 
way to create feedback loops for 
LLM-powered agentic flows.

6. Introduce Eective 
Feedback Loops
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For critical agentic decisions with 
significant consequences, 
humans must validate the AI 
agent’s decision.

 In the SpaceX example, the 
decision not to guide the booster 
back to the launchpad and land it 
in the ocean was made by a 
human, given the telemetry and 
AI-powered analysis.

7. Implement Adaptive 
Human-in-the-Loop 
(HITL)

Practical Recommendations

Even when HITL is not needed, full 
journaling of agentic decisions 
must be performed for several 
reasons: debugging any issues, 
improving agentic quality, and, 
coincidentally, addressing the key 
requirements of AI governance.

8. Implement 
Comprehensive 
Observability

Designing agentic AI systems with 
a modular architecture enhances 
scalability, maintainability, and 
reliability. 

By structuring the system into 
distinct agents with well-defined 
interfaces, each architecture 
component can perform specific 
tasks independently while 
communicating seamlessly with 
others.

9. Embrace Modular 
Architecture
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Conclusion
This new frontier demands a collaborative eort between 
disciplines—melding the rigor of control theory and the best 
practices of software engineering with the advances of GenAI. By 
understanding the limitations and potentials of each approach, we 
can design agentic systems that are not only powerful but also safe, 
reliable, and aligned with human values.



     
          

We help enterprises 
harness the potential of 
GenAI with solutions 
that are:

AI you can trust—ethical, 
transparent, and aligned with your 
governance and security needs.

Responsible

AI that performs consistently, 
delivering accurate results 
even as conditions change.

Reliable
Scalable AI with modular, reusable 
frameworks that save time and drive 
faster results across your business.

Reusable
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Learn more:
globallogic.com/genai

https://www.globallogic.com/services/offerings/generative-ai-strategy-solutions/


GlobalLogic - A Hitachi Group Company 24

Agentic AI’s Coming of Age

About the Author

Yuriy Yuzifovich serves as GlobalLogic’s CTO, AI, driving the 
company’s AI vision, strategy, and growth roadmap while 
incubating deep-tech capabilities. With 25 years of 
experience, Yuriy brings expertise in technology consulting, AI, 
and data-driven product development. 

Before GlobalLogic, he led Alibaba Cloud’s eorts to transform 
data silos into actionable insights, developing advanced 
cybersecurity solutions. At Akamai, he built AI systems to 
process telecom data, enhancing security for major ISPs. 

Yuriy holds a master’s in computer science and an MBA in 
quantitative finance from Washington University in St. Louis. 
Based in Los Gatos, he enjoys hiking and fishing in his free 
time.

Yuriy Yuzifovich, Chief Technology Oicer, AI



GlobalLogic, a Hitachi company, is a 
trusted digital engineering partner 
to the world’s largest and most 
forward-thinking companies.

We helped create some of the most innovative and 
widely used digital products and experiences. 
Today we’re helping clients transform businesses 
and redefine industries through intelligent 
products, platforms, and services.

GlobalLogic - A Hitachi Group Company


