
Enterprise Application
Integration Using Spring
Integration Framework

This white paper explores a use case in
which GlobalLogic implemented an enterprise
application integration (EAI) solution for a
customer to manage multiple challenges such as
integrating heterogeneous information systems,
managing workflows, applying queuing theory
for asynchronous communication, managing
messaging and security, and leveraging services-
oriented architecture. We will provide a basic
introduction of EAI, discuss why we chose to
use a Spring Integration Framework for our use
case, and demonstrate how we implemented
the framework to build an extensive, scalable,
enterprise-wide middleware solution.

www.globallogic.com

Sourabh Goel, Engineering Manager
Anshul Rohilla, Engineering Developer

Noida, India

Enterprise Application Integration Using Spring
Integration Framework

Sourabh Goel, Engineering Manager
Anshul Rohilla, Engineering Developer

GlobalLogic Inc. www.globallogic.com 2

Table of Contents

The Initial Challenge ..

What is Enterprise Application Integration? ...

Spring Integration Framework ..
	 Spring Integration for FTP ..
	 Extending Spring Integration for SOAP Services ...

Middleware Solution Using Spring Integration ...

Conclusion ..

3

3

4
5
7

9

9

Enterprise Application Integration Using Spring
Integration Framework

Sourabh Goel, Engineering Manager
Anshul Rohilla, Engineering Developer

GlobalLogic Inc. www.globallogic.com 3

The Initial Challenge

The GlobalLogic customer in this use case is a U.S. telecom
services provider that partners with multiple vendors all
over the country to sell its products and services. Some
of these vendors are themselves major corporations
with proprietary data structures for managing order
information. This order information is compiled together
based on a package or standalone products that the
vendors sell to end users.

The customer’s existing solution for vendor integration
was scattered across multiple applications, each
dedicated to managing both upstream and downstream
communications with a specific vendor’s information
system. It was quite challenging for the customer to
keep both the vendors’ and its own systems in sync.
Furthermore, the customer had recently acquired another
company, which meant integrating and managing an
entirely new set of vendor systems.

Rather than continue to support a patchwork solution,
the customer decided to invest in a long-term, scalable
solution. The goal was to build a middleware integration
platform that could support existing vendors from
the merged entities, as well as be flexible enough to
seamlessly integrate future requirements. The customer
partnered with GlobalLogic to explore this new solution
through a pilot project.

The initial use case was limited to supporting integration
for a vendor subset and supporting the information
systems that use FTP for message sharing. This use case
was later extended to implement support for vendors with
Asynchronous SOAP web services, and it was backed by
a queue for asynchronicity.

What is Enterprise Application
Integration?

For an organization like that of our customer, which has a
multitude of applications for implementing operations and
billing support solutions, its applications must talk to each
other. But because these apps may have been developed
over a period of time using a disparate set of technologies,
integration may not be exactly straightforward. Also, the
data structures used to represent a piece of information

might be different from one application to the next, which
would make it very difficult for them to communicate. Any
communication processes would potentially need specific
transformation rules.

Furthermore, it’s possible that the transformation rules
may not be managed in a global manner. Two applications
may implement some of these rules to talk to each other
without being aware of similar intelligence available
elsewhere in the system. For this reason, such applications
are sometimes referred to as “islands of automation” or
“information silos.”

This lack of communication leads to inefficiencies since
identical data is stored in multiple locations. It may also lead
to a situation in which straightforward processes cannot
be automated. If integration is applied without following
a structured approach, then point-to-point connections
may grow across an organization. Dependencies would
be added on an impromptu basis, which could result in
a complex structure. This is where enterprise application
integration (EAI) comes into play.

EAI is a set of architectural principles related to system
integration. It lays out the best practices, technologies,
and service solutions for common application and system
integration challenges. EAI is the process of linking
such applications within the context of an organization,
which may include both inbound and outbound calls that
transcend the boundary of the organization’s information
systems. EAI attempts to simplify and automate business
processes to the greatest extent possible, while
simultaneously trying to avoid making sweeping changes
to the existing applications or data structures.

In his seminal work Enterprise Integration Patterns, Gregor
Hohpe outlines the most commonly used integration
patterns within four broad categories:

•	 File transfer (systems communicate by placing the
messages they want to exchange under a directory
accessible via FTP)

•	 Shared database(s)
•	 Remote procedure call (most commonly implemented

by SOAP web services)
•	 Messaging (implemented in JMS; systems connect to

a messaging channel and exchange data)

Enterprise Application Integration Using Spring
Integration Framework

Sourabh Goel, Engineering Manager
Anshul Rohilla, Engineering Developer

GlobalLogic Inc. www.globallogic.com 4

Most modern middleware solutions implement these
patterns to integrate multiple heterogeneous systems
in which each integration endpoint has its own
communication protocol requirements. Some of the
more popular solutions that are bundled together as an
Enterprise Service Bus (ESB) for this purpose include
Apache ServiceMix and Mule ESB.

Spring Integration Framework

Spring Integration is an API-centric framework that
leverages Spring’s core POJO-centric model for creating
intuitive integration workflows. Integration workflows are
defined via standard Spring configuration files. Unlike
Apache ServiceMix or Mule ESB, it is not tied to a server
and runs within the context of either a standalone or
web-based Spring application. The API-centric nature of
the Spring Integration Framework borrows heavily from
the approach recommended in Enterprise Integration
Patterns.

As a standard integration practice, Spring Integration is
driven by a message-based approach to programming that
provides greater scalability and flexibility. It implements
messaging using the ubiquitous principles of inversion of
control (IOC).

Traditionally, application developers have been
responsible for invoking the appropriate methods on
objects as relevant to specific message types. Message-
driven applications in Spring invoke the methods of their

objects using IOC. It is the framework’s responsibility
to operate the integration machinery of the application.
Instead of calling methods on objects, we put messages
on channels. The framework then routes the messages to
the appropriate components.

Some of the out-of-box adapters and channels that the
Spring Integration Framework provides include:

•	 Feed inbound channel adapter for feed format such
as RSS or ATOM

•	 AMQP-backed message channels
•	 FTP/FTPS adapter
•	 Http inbound/outbound gateway
•	 TCP and UDP support
•	 JDBC support
•	 Message-driven channel adapter
•	 Mail sending/receiving channel adapter
•	 MongoDB inbound/outbound channel adapter
•	 Redis inbound/outbound channel adapter
•	 RMI support
•	 Twitter adapter
•	 Inbound/outbound web service gateways

An introduction to some of the core messaging
components of the Spring Integration Framework is
warranted at this point:

A message consists of headers and a payload, and it is
directed along channels for processing. The payload of a
message can be any type and can even be routed based
on this type.

Message
Request

Input
Channel

Input
Channel

Input
Channel

Output
Channel

Message
Response

Inbound
Adaptor

Router

Outbound
Adaptor

Filter

Service
Activator

Delayer

Message
Handler

Transformer

Processing

Figure 1: An example of a Spring Integration workflow involving various components

Enterprise Application Integration Using Spring
Integration Framework

Sourabh Goel, Engineering Manager
Anshul Rohilla, Engineering Developer

GlobalLogic Inc. www.globallogic.com 5

A channel is used for directing messages to the appropriate
endpoints for processing. A channel may either be point-
to-point or publish/subscribe and can support buffering
and polling if required.

A message endpoint is a POJO that allows you to apply
domain-specific logic on messages. This means you can
translate inbound requests into service layer invocations,
as well as service layer returns into outbound replies.

Transformers are used to convert the content or structure
of a message, returning the modified message. Content
transformers allow you to enhance messages with
additional information (e.g., adding an additional header).

Filters determine whether messages should be passed on
or not. The message is either passed on to the output
channel, dropped, or an exception is thrown depending on
the implementation.

Splitters allow multiple messages to be created by dividing
the content of one message into parts, which is useful for
composite payloads.

A service activator is a generic message endpoint that
enables you to connect a target object method or service
to the messaging system for performing domain-specific
logic upon the receipt of a message.

Channel adapters may be either inbound or outbound
and will typically perform any conversion required on
the message to translate it to the format required by the
external system.

Spring Integration for FTP

Going back to our use case, we found that one of our
customer’s vendors shares its order information in the
format of an XML file. This file is generally sent using
an FTP and is stored in a specific directory on the FTP
server. We decided to leverage Spring Integration to
create a more streamlined (and asynchronous) process,
as demonstrated below:

•	 Solution reads the files in a batch from the FTP
directory.

•	 Solution pushes the files into a queue that is read by
a processor.

•	 Processor uses a vendor-specific transformer.
•	 Processor sends the processed file to the order

management system.
•	 Processor sends out an email notification to the group

responsible for managing the vendor order.
•	 A response is written back in a vendor-specific

location on the FTP server.
•	 Another batch of files is read from the FTP server

once the entire queue has been exhausted.

FTP Inbound
Adaptor

FTP
Outbound
Adaptor

Web Service
Adaptor

Order
Management

Response
Transformer

Service
Activator

Message
Handler Processor

Email
ServiceFTP

FTP

Figure 2: Components of Spring Integration Framework for FTP integration

Message
Channel
[Queue]

Outbound
Message
Channel

Inbound
Message
Channel

Message
Channel
[Queue]

Enterprise Application Integration Using Spring
Integration Framework

Sourabh Goel, Engineering Manager
Anshul Rohilla, Engineering Developer

GlobalLogic Inc. www.globallogic.com 6

The following code demonstrates how we configured the Spring Integration components under Spring Context to
create the FTP solution.

<int:channel id=”filesIn”>
		 <int:queue capacity=”40” />
</int:channel>	

<int:channel id=”baseFileChannel”>
	 <int:queue capacity=”40” />
</int:channel>
	
<int:channel id=”filesOut”>
	 <int:queue capacity=”40” />
</int:channel>

<file:inbound-channel-adapter channel=”filesIn”
directory=”#{applicationProperties.orderBaseDirectory}” prevent-duplicates=”true”
scanner=”recursiveDirectoryScanner” filename-pattern=”*.xml”>
		 <int:poller fixed-rate=”5000” />
</file:inbound-channel-adapter>

<task:executor id=”baseFileMessageProcessingThreadPool”	 pool-size=”5”
queue-capacity=”20”
keep-alive=”120” />

<int:service-activator id=”baseFileMessageProcessor” ref=”baseFileMessageProcessingManager”
input-channel=”filesIn”
output-channel=”filesOut”
method=”process” >
<int:poller task-executor=”baseFileMessageProcessingThreadPool” fixed-rate=”6000” />
</int:service-activator>
	
<bean id=”baseFileMessageProcessingManager” class=” BaseFileProcessingManagerImpl” scope=”thread”/>
	
<file:outbound-channel-adapter directory=”#{applicationProperties.responseBaseDirectory}”
 channel=”filesOut “>
		 <int:poller fixed-rate=”5000” />
</file:outbound-channel-adapter>

Enterprise Application Integration Using Spring
Integration Framework

Sourabh Goel, Engineering Manager
Anshul Rohilla, Engineering Developer

GlobalLogic Inc. www.globallogic.com 7

Extending Spring Integration for SOAP Services

Once our team successfully demonstrated Spring
Integration Framework’s ease of configuration and
flexibility, we decided to focus on extending our use
case to support vendors that use SOAP web services for
sharing order information.

The process of receiving order information in an XML
payload, processing it, sending notifications out, and
updating the order management system needed to be
decoupled from sending a response back to the vendor.
To address this issue, we created an inbound web service
channel to host a service for receiving incoming orders.
A separate outbound channel for sending a response
back to the vendor-specific web service was wrapped in
an inbound channel, which was integrated with the local
order management system (as demonstrated in the below
diagram).

If you compare this workflow to the one we created
for the FTP solution, you can see that we reused many
of the components (e.g., integration via an outbound
channel adapter with the order management system and
email service). Only the transformation logic specific to
a particular vendor, both for requests and responses,
changed in a seamless manner.

This workflow also demonstrates the component-oriented
and loosely coupled nature of an integration solution that
is built using the Spring Integration Framework, wherein
the probability of reuse and support for plug-and-play is
extremely high.

Message
Channel
[Queue]

Outbound
Message
Channel

Inbound
Message
Channel

Message
Channel
[Queue]

Web Service
Adaptor

Web Service
Adaptor

Web Service
Adaptor

Order
Management

Response
Transformer

Service
Activator

Message
Handler Processor

Email
Service

Async SOAP
Request

Async SOAP
Request

Figure 3: Components of Spring Integration Framework for web service integration

Enterprise Application Integration Using Spring
Integration Framework

Sourabh Goel, Engineering Manager
Anshul Rohilla, Engineering Developer

GlobalLogic Inc. www.globallogic.com 8

Below is a demonstration of how you can configure a SOAP web service endpoint that is backed by a pollable queue.

<int:channel id=”input”>
		 <int:queue capacity=”40” />
</int:channel>
	
<int:channel id=”output”>
	 <int:queue capacity=”40” />
</int:channel>

<int-ws:inbound-gateway id=”ws-inbound-gateway” request-channel=”input”/>

<task:executor id=”baseMessageProcessingThreadPool”		 pool-size=”5”
queue-capacity=”20”
keep-alive=”120” />

<int:service-activator id=”baseMessageProcessor” ref=”baseMessageProcessingManager”
 input-channel=”input”
 method=”process” >
<int:poller task-executor=”baseMessageProcessingThreadPool” fixed-rate=”6000” />
</int:service-activator>
	
<bean id=”baseMessageProcessingManager” class=” BaseProcessingManagerImpl” scope=”thread”/>

Enterprise Application Integration Using Spring
Integration Framework

Sourabh Goel, Engineering Manager
Anshul Rohilla, Engineering Developer

GlobalLogic Inc. www.globallogic.com 9

Middleware Solution Using Spring
Integration

A potential drawback of trying to create multiple
integration endpoints managed under a Spring context
is overly complex context configuration file(s). To avoid
this issue, we chose to organize the context configuration
file(s) in a modular manner that would seamlessly support
the plug-and-play of multiple endpoints. Our intent was
to protect existing endpoints from the impact of changes
that resulted from adding new endpoints. At the same
time, it was important to ensure that component reuse
could be supported in an unobtrusive manner.

In our use case implementation, we began by creating a
Spring context for an FTP endpoint. After successfully
completing this integration, we attempted to integrate a
SOAP endpoint. The guiding principles of plug-and-play
leveraging OOPS directed our hand in refactoring the
existing Spring context into:

•	 A parent context with configuration support for
common channels, services, routers, and adapters

•	 A child context for an FTP endpoint that was
declaratively included in the parent context

•	 A child context for a SOAP endpoint that was
declaratively included in the parent context

Having separate context for each endpoint enabled us to
ensure that issues like the unavailability of any individual
endpoint did not bring the entire system down. We used
the same strategy when we needed to integrate an
ApacheMQ-based endpoint to support another vendor.

Conclusion

Based on our experience implementing this use case, we
can claim with a reasonable degree of confidence that it is
possible to orchestrate a scalable middleware solution by
leveraging Spring’s built-in support for various integration
endpoints and modularizing their weaving together in a
project.

About GlobalLogic Inc.
GlobalLogic is a full-lifecycle product development services leader
that combines deep domain expertise and cross-industry experience
to connect makers with markets worldwide.Using insight gained
from working on innovative products and disruptive technologies,
we collaborate with customers to show them how strategic research
and development can become a tool for managing their future. We
build partnerships with market-defining business and technology
leaders who want to make amazing products, discover new revenue
opportunities, and accelerate time to market.

For more information, visit www.globallogic.com

Contact

Emily Younger
+1.512.394.7745
emily.younger@globallogic.com

