
OUTSYSTEMS APP DEVELOPMENT BEST

PRACTICES USING THE 3 LAYER

ARCHITECTURE CANVAS

WHAT IS THE ARCHITECTURE CANVAS?

The Architecture Canvas in OutSystems is a visual tool that helps software architects

and developers to define and communicate the architecture of their applications

effectively. It provides a structured way to capture key architectural decisions,

components, and relationships in a single canvas or diagram.

The Architecture Canvas, an OutSystems architecture tool, simplifies the design of

Service-Oriented Architectures (SOA), advocating for proper abstraction of reusable

(micro)services and isolation of distinct functional modules. It's particularly beneficial

when managing multiple applications sharing common modules. In a typical medium to

large OutSystems setup, it supports over 20 mission-critical applications and 200+

interdependent modules.

The Architecture Canvas typically consists of several sections or layers, each

representing a different aspect of the system's architecture. These layers often include:

● Purpose: This section describes the system's purpose, goals, and objectives. It

defines the problem domain that the system aims to address and outlines the

desired outcomes.

● Stakeholders: Here, the primary stakeholders involved in the system, such as

users, customers, developers, and administrators, are identified. Their concerns,

needs, and expectations regarding the system are documented.

● Functional Requirements: This section outlines the functional requirements of

the system, describing the features, capabilities, and behaviors it should exhibit

to satisfy stakeholders' needs.

● Non-functional Requirements: Non-functional requirements, such as

performance, scalability, reliability, security, and usability, are documented in this

section. These requirements define the quality attributes and constraints that the

system must meet.

● Architecture Decisions: The key architectural decisions made during the design

and development of the system are captured here. This includes decisions

related to architectural styles, patterns, components, interfaces, and

technologies.

● Architecture Views: Different views or perspectives of the system's architecture,

such as logical, physical, and deployment views, are depicted in this section.

Each view focuses on specific aspects of the architecture, providing different

insights into the system's structure and behavior.

● Dependencies and Relationships: The dependencies and relationships between

architectural components, such as modules, layers, and subsystems, are

represented here. This helps visualize how different parts of the system interact

and collaborate to fulfill the system's functionality.

● Roadmap and Evolution: The future roadmap for the system's architecture and

its evolution over time are outlined in this section. This includes planned

enhancements, upgrades, migrations, and adaptations to accommodate

changing requirements and technologies.

What are Architecture Solution Goals?

● Aligned with Business concepts

● Reusability promotion

● Maintainability

● Scalability (but still Flexible)

● Performant

What is 3 Layer Architecture Canvas and How It's used?

The 3 layer architecture is as follows.

● EndUser Module: Its store only interface Related Files and Also its visible to end user.

● Core Modules: Its Store Core Logic that reusable services around business concepts,

Business roles and web blocks , Provide APIs to expose External API Services, Core

Widgets, Composite Logic that help us for logic to synchronize data, Core Services

● Foundation Modules: Its store Non Functional Requirements or integration module

reusable in any business context. Libraries for external plug-ins

Example

Requirement

Meal Ordering: Requested, prepared and delivered a meal order

● Order Management External ERP

● Delivery person Selected on the Delivery location.

Module used

 Integration Needs: External SqlDataBase

Business Concepts: Payment, Delivery, Location, Order Steps, Order,Items

User Interface: Order Meal

Users

Delivery Man, Store , Customer, Quality Manager, Super User

SOLUTION

Validating the Architecture

1. No Upward references

2. No side references in end-user modules

3. No cyclic references

